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SUMMARY 
An expression is obtained for the jump in the vorticity across 

P gasdynamic discontinuity in an inviscid flow. This result 
generalizes results of Truesdell (1952) and Lighthill (1957) for the 
vorticity behind a steady curved shock in a uniform flow and that of 
Emmons (1957) for the vorticity jump across a steady flame. The 
derivation is a dynamical one, and no assumptions on the com- 
position or thermodynamic properties of the fluid are made. The 
jump in vorticity in the steady flow case is found to depend upon 
the jump in density and upon gradients along the discontinuity 
surface of the tangential velocity component and of the normal 
mass flow. An analogous result is found with unsteady flow. 

INTRODUCTION 
It is a well-known fact that the vorticity in a steady compressible flow 

is generally discontinuous across a shock wave. Truesdell (1952) first 
obtained a general expression for the vorticity behind a curved two- 
dimensional steady shock in a uniform flow. Truesdell states his result 
thus: the magnitude of the vorticity generated by a shock of given strength 
and Curvature depends only on the magnitude of the tangential component of 
velocity and is independent of the form of the equation of state. Here the 
strength of a shock is defined as the density jump across the shock divided 
by the density in front. Other investigators, including this writer and 
Lighthill, unaware of Truesdell’s work, later rederived the result. However, 
Lighthill (1957, pp. 14, 15) also provided a significant generalization in 
showing that the result was valid, when expressed in terms of the axes of 
principal curvature, for a steady shock wave of general shape in a uniform 
flow. Lighthill specified the density ratio across the shock to be the 
limiting value for a very strong shock, but this restriction is not used in 
his analysis and is unnecessary. 

The vorticity relations just discussed depend upon a number of 
assumptions, of which the most restrictive is that the flow in front of the 
shock is uniform. The methods used all require the application of Crocco’s 
vorticity law relating the vorticity with the entropy gradient, and the 
assumptions which underlie this law must be made. These assumptions 
are that the flow is steady, is isocompositional, and is isoenergetic (i.e. 
has constant total enthalpy). 
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A similar question arises in the theory of the propagation of a laminar 
flame in a combustible gas mixture, as to the magnitude of the vorticity 
engendered by the flame. In this case the disturbance caused by the flame 
is felt in the fluid region in front of the flame, and the assumption of uniform 
flow in this region cannot be made. Emmons (1957) has obtained an 
expression for the change in vorticity across a flame in terms of the density 
ratio across the discontinuity and the jump in tangential entropy gradient. 
Emmons uses a modified form of Crocco’s vorticity law in his derivation, 
and his results are also restricted to steady and isocompositional flows. 
Emmons’s results and the results of this paper were obtained independently 
and are not directly comparable. 

The simplicity of Truesdell’s relation and its independence of the 
thermodynamic state of the fluid suggests that the relation is a purely 
dynamical one. A purely dynamical relation must be derivahle without 
recourse to a thermodynamic law such as Crocco’s vorticity law. In 
presenting a dynamical derivation for the vorticity jump we shall consider 
first the case of steady flow, in which the principal features of the derivation 
are not obscured by the complexity of an arbitrarily moving discontinuity. 
Our method involves a vector decomposition normal to and tangential to 
the discontinuity surface. The discontinuities considered are gasdynamic 
ones, including shock waves, deflagrations, and detonations, but excluding 
contact discontinuities or slip streams. 

THE VORTICITY JUMP IN STEADY FLOW 

The discontinuity surface is assumed to be sufficiently smooth and 
continuous, without discontinuities in slope. The orientation of the 
surface is specified at any point by the unit normal vector n, which is assumed 
to be differentiable along the surface. A natural local coordinate system 
is imagined, based on any intrinsic two-dimensional coordinate system on 
the surface. The additional coordinate n is distance along a straight normal 
from the discontinuity surface, with the corresponding coordinate surfaces 
geodesic parallels to the discontinuity surface. 

The unit vector n is the gradient of this normal coordinate, and we 
obtain immediately 

The negative of the gradient of n is the two-dimensional curvature tensor 
in the discontinuity surface 

which from (1) must be symmetric. Because n is a unit vector Vn  can 
have no component normal to the surface. The curvature is defined so 
as to be positive if the surface is concave on the side from which n is 
directed. 

In  general, all vectors will be considered in a form decomposed, with 
respect to the surface, into a normal component and a tangential 

V x n  = 0. (1). 

L =  -Vn, (2)” 
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Thus, with the velocity vector q for the flow two-dimensional vector. 
field, we have 

4 = nqn + q,, (3) 

where q n = n . q ,  q , = n x ( q x n ) .  (4) 
The vorticity is the curl of q, and is expressed as 

r = V x ( n q n ) + V x q ,  

= n ( V X ~ ) n + ( V X q t ) ~ - n X V q n ;  (5) 

we note that 5, = (V x st),. (6) 

(V x qt) x n  = n.  V q t + q t .  Vn, (7) 

Vector expansion of the identity V ( n . q t )  = 0 gives us the result 

and from ( 5 )  we obtain an expression for Gt 

in which the subscript t on the nabla operator V indicates that only the 
tangential part of the derivative is included. 

We need also an expression for the tangential part of the directional 
 derivative of the velocity, q.  Vq. A straightforward analysis starting 
with (3) gives 

(q.vdt=P,(g-  e .9)+qt .o ,gt .  (9) 

We now turn to the steady discontinuity relations, with the symbol 8 
indicating the jump of a quantity across the discontinuity. The continuity 
condition is 

while the tangential momentum condition is 
%qn) = 0, (10) 

8q, = 0. (1  1) 
It is at this point, in establishing (ll),  that we assume non-zero mass flow 
through the discontinuity and exclude contact discontinuities from our 
consideration. The normal momentum condition is 

-8P = PPn8qn. (12) 
The energy condition across the discontinuity is not used. Since relations 
(lo), (11) and (12) hold everywhere on the discontinuity surface we may 
differentiate them along the surface. Also, the operators 8 and V, are 
commutable. The increment in the vorticity is 

from (6) and (8). Equation (13) is a statement of the obvious fact that 
the normal component of the vorticity is continuous across a discontinuity. 
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We next write the tangential part of the momentum equation for the 
Since the flow is assumed steady, we obtain immediately with fluid flow. 

the aid of (9) 

-vtp = P q n ( z  -qt.%)+Pqt*vt9t. ( 1 9  

Our method now is to equate the tangential gradient of (12) with the jump 
in (15); 

- SVtP = (PqnPVt qn + Vt(Pqn)%n 

Combining (lo), (14) and (16) gives us our desired expression for S&; 

I n  this expression the only jumps which appear are jumps in the density, 
and these are multiplied by quantities which are continuous across the 
discontinuity. Because of (13), the subscript t on < in (17) is not needed. 

Finally, we obtain Truesdell's expression with Lighthill's generalization, 
taking the flow in front of the discontinuity to be uniform with density p o  
and velocity U .  We evaluate the quantities appearing in (17), 

' Y t  = n x [Vt(Pd%-l) - (~&-'9t Vt qt &)I* (17) 

Pqn = P O  un, (18 a) 

Vt(P9,) = Po u v n  = -pout B, (18b) 
qt.Vtqt = n x ( U x U , . V n )  = UnUt.%, (18c) 

S &  = n x Ut . %(p,l- po1)Gp,  (19) 
and obtain 

or, since the flow in front of the discontinuity is irrotational, 
( 1 - € ) 2  

c l =  -- n x  Ut.ait. 
€ 

Here p 1  is the density behind the discontinuity, and 

is the density ratio across the discontinuity. It should be noted that this 
result is not limited to shock waves, but would hold also for a condensation 
shock or detonation. 

THE VORTICITY JUMP IN UNSTEADY FLOW 

I n  dealing with the unsteady flow case we must take into account not 
only the unsteady nature of the flow field but also an arbitrary motion of 
the discontinuity surface. Many of the relations obtained for the steady 
flow case are still valid, principally the kinematic relations (6), (8) and (9), 
and the jump relations for the tangential velocity and the vorticity (1 l), 
(13) and (14). The primary modification which must be made is to the 
relations (10) and (12) involving the normal mass flow across the discontinuity. 

Of the available ways in which the shock motion may be specified, the 
most convenient is in terms of its normal velocity nqs. We use the notation 
d/dt to denote the time derivative taken at a point which always lies on the 

E = P o / P 1  (21) 
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discontinuity and which moves in a direction normal to the discontinuity 
when the discontinuity moves. If o, is the angular velocity of the surface 
measured at such a point and is defined as a tangential vector, we may show 
that 

- dn = o , x n =  -Vtqs.  
dt 

We designate the relative normal velocity component qT as 

91. = 4n - Qs, (23). 

s ( P 4 r )  = 0 (24) 

(251 

and obtain the discontinuity relations 

in place of (lo), and 

in place of (12). We use the symbol D to designate the classical total or 
material derivative with respect to time ; and we introduce the symbol Dt 
to designate a tangential total time derivative, the time derivative with 
respect to an observer who moves along the shock with a total velocity 
nqs + q,. If such a derivative is a vector, we shall include only its tangential 
part. Note that for such an observer the discontinuity is a normal one. 
The distinction between the derivatives D and Dt is immaterial when they 
are applied to the vector n,  because the space derivative of n in the normal 
direction is zero. Thus we have 

D n  = D , n  = - +qt .Vn,  

- 89 = (Pqr)%r = (Pqr)%n 

(26) 
dn 
dt 

For the tangential velocity qt we have 

and 

In  place of (15) we may now write 

- Vt P = P ( D W n ) t  + ~(Dqt ) t  

Applying the same procedure as was used in the case of steady flow, we 
obtain the desired expression for the vorticity jump as 

G t  = n x Pt(Pq?.)8(P-l) - (Pqr)-l(Q qt + qs D t n ) % J ) I  (30) 

D t n  = -V,qs-qt .%.  (31) 

in place of (17). The quantity Din is given in (26), or, with (2) and (22), 
may be re-expressed as 

The quantity Dtqt is given by (28) with (27). It may be checked that (30) 
is invariant under a velocity transformation to another unaccelerated frame 
of reference. Again, the subscript t on q in (30) is not needed. 
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As an example of our result (30) for unsteady flow we apply it to the case 
i n  which the flow in front of the discontinuity is at a uniform density po 
and uniform velocity U. We evaluate the quantities appearing in (30) to 
obtain, in analogy with (18), 

P4r = Po( u?z - 9.91, ( 3 2 4  
(32b) 

Dtqt=nx(UxD,n)  = -U,D,n. (32c) 

(33) 

nx(Ut .a+v&) (34) 

Vdf 4,) = Po Q n> 

The vorticity jump is then obtained from (30), 

in  place of (19), or 
SY, = n x (U, 5% + 0, 9s)(PF1 - P 0 1 ) 6 P ,  

(1 - €)2 

in place of (20), with E given as before by (21). This result is the generalization 
to unsteady flow of the Truesdell-Lighthill vorticity expression. It may 
be noted that the fundamental quantity appearing in (20) or (34) is the 
angular velocity of the discontinuity surface with respect to the observer 
for whom a derivative is 4. We may rewrite (20) or (34) in the form 

(1 - €)Z 
h = 7 0, 

where the angular velocity w is 
o = n x D , n  

=us+Ul .%xn,  
with w, defined in (22). 

(35) 
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